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Abstract. Measurement and verification (M&V) is the process of quantifying energy savings 

originated by one or several energy conservation measures (ECM) in an existing building. The 

estimation of the savings consist of comparing actual energy consumption to the adjusted 

baseline model. This paper focuses on comparing three approaches for creating baseline models: 

linear, symbolic regression (SR) and extreme gradient boost (XGBoost); and discusses the 

advantages and drawbacks on each of them from a practitioner’s perspective. In this paper, these 

approaches are assessed qualitatively and quantitatively. The qualitative assessment compares 

the type of model output, interpretability and calibration time. Linear model excels in all three 

criteria whereas the XGBoost is the worst option for model output and interpretability. SR model 

is the worst performing in terms of calibration time, but intermediate model for output and 

interpretability. Quantitative assessment is done through the quantification of prediction errors 

in 367 buildings after being calibrated with hourly data for a 12-month period. The XGBoost 

model has the highest prediction accuracy in terms of CVRMSE. The linear model performs 

significantly well in terms of NMBE. SR preforms well in terms of CVRMSE and has the best 

median NMBE overall remaining as the most accurate interpretable option. The results show 

different benefits and drawbacks of each approach and the implementation of SR model for this 

application is the main innovation of this paper. 

1.  Introduction 

Buildings account for more than one third of energy consumption worldwide, being a significant 

originator of greenhouse emissions [1] . Out of all the energy used in buildings during their life-cycle, 

it is estimated that 80-90% is used during the operational phase [2]. To reduce energy consumption 

during the operational phase energy conservation measures (ECM) are cost effective actions that 

improve energy performance without compromising occupants’ comfort.  

Measurement and verification (M&V) is the process of quantifying energy savings originated by one 

or several ECMs in an existing building. M&V is used whenever the savings need to be verified such as 

in energy efficiency (EE) projects, energy performance contracts (EPC) as well as to provide proof of 

the effectiveness of an energy management program. The reliable and interpretable calculation of 

savings is critical to generate consensus of the estimated savings between building owners and energy 

services companies (ESCO). M&V is essential and increasingly required for the financing and rebate 

incentives that make energy efficiency projects viable, as investments in these projects can only be 

justified by delivering real value to beneficiaries in the form of energy savings. 



 

 

 

 

 

 

Regarding M&V guidance, standards, protocols and guidelines have been created in order to promote 

a unified approach to savings estimation and increase confidence from investors. The International 

Performance Measurement and Verification Protocol (IPMVP) [3] and ASHRAE Guideline 14 [4] are 

the most common guidelines for M&V projects in the world today. Recently the ISO: International 

Organization for Standardization (ISO) released an M&V standard under the name ISO 17741:2016[5].  

Regardless the standard/protocol/guideline used, strategies to quantify energy savings will depend 

on the size of the intervention and the magnitude of the expected savings in relation to the energy 

consumption of the whole building. When expected savings in relation to the whole building are 

significant (>10% for IPMVP), the process consist of creating a baseline model usually from utility data, 

and create an “adjusted baseline” meaning that model predictions have been adjusted to current 

conditions to account for time-dependent parameters such as weather or thermostat set-points.  

During the M&V process, the adjusted baseline is used to represent the energy consumption of the 

building without the ECM for the reporting period.  Hence, estimated savings are the difference between 

the adjusted baseline and the current energy consumption of the whole building. This strategy is known 

as “option C” for the IPMVP, “whole building path” for ASHRAE G14, and “adjusted calculation” in 

ISO 17741. Finally, estimated savings are generally used by the ECM investor e.g. an ESCO which 

receives the monetary savings equivalent for an agreed reporting period as stablished in a contract. After 

the reporting period is finalized, savings are translated to the building owner/occupants/manager 

depending on the case. 

 
Figure 1 Estimated savings are calculated as the difference between the adjusted baseline and the actual demand after the 

installation of the ECM. The period before the ECM installation is known as baseline, the one after is known as reporting 

period. Measured demand is typically acquired from smart meters. 

In recent times, utility data has become more available in the form of time-series usually with an 

interval from 15 minutes to 1 hour, as opposed to monthly or bi-monthly utility bills. Creating baseline 

models using aggregated consumption, e.g. monthly or bi-monthly, is inherently an uncertain process, 

given that aggregated data does not account for daily demand patterns, weekend/weekday trends, 

operational changes and other non-routine events within the billing period. 

On the other hand, the widespread use of modern building management systems (BMS) and smart 

meters enables the time-series demand measurements. Consequently, M&V practitioners have a whole 

new set of options to create baseline models, some of which will be described in the following section. 



 

 

 

 

 

 

Current common practices in creating baseline models include day-adjusted models,  

two/three/four/five parameter change point models, multivariate model, variable-base degree day 

models, among others [4].  Baseline models face a trade-off between accuracy and costs. Increasing 

accuracy requires significant sampling, enough metering time-span, modelling efforts and verification 

of the installation of the ECM. All these actions have cost implications. However, allowable uncertainty 

in baseline models is limited by the magnitude of the expected savings, otherwise, it becomes impossible 

to demonstrate that savings are actually due to ECMs over noise. Hence, the minimization of uncertainty 

by creating higher quality models with a limited budget is one of the main challenges of M&V.  

This paper focuses on comparing three approaches for creating baseline models: linear, extreme 

gradient boost (XGBoost) and symbolic regression (SR) and discussing their advantages and 

disadvantages from a practitioner’s perspective. A practitioner’s perspective means that comparison 

should respond to the typical questions an M&V professional will commonly face on their everyday 

practice. Overall quality of the models is assessed qualitatively and quantitatively. On the qualitative 

side, the type of model generated, interpretability and calibration times is discussed. On the other hand, 

the quantitative assessment is done through an online assessment tool that provides hourly 12-month 

gap free data for 347 datasets for model calibration. The quantification of the assessment is based on the 

normalized mean bias error (NMBE) and the Coefficient of Variation of the Root Mean Squared Error 

(CVRMSE) as well as the 25th and 75th percentile over all the data sets.  The code is provided to promote 

the use of these techniques in everyday M&V practitioner’s work. 

2.  Baseline models 

Demand of energy in buildings can be generally attributed to independent variables such as time of the 

day, outdoor temperature and other weather variables, levels of occupancy and other non-routine 

changes, such as thermostat set-points.  

Baseline models can be used to predict average demand shed, rebound, daily peak demand and/or 

energy in daily, weekly or monthly basis [6]. Also they can be designed to make short term predictions 

i.e. using the 10 most recent days [7] or to generate long term predictions (12-months or more) given a 

similarly long calibration data set [8].   

Finally, current M&V guidelines require the model to be reported and agreed among all 

stakeholders[3]. 

2.1.  Linear model 

Linear models are commonly used to create baseline models for M&V. An advantage of this approach 

is the interpretability of the model as it can be reported in form of a mathematical function across 

stakeholders for further verification, if required. However, buildings are complicated systems and linear 

models cannot always capture the underlying relationships between inputs, such as weather, occupancy 

and baseline adjustments, and an output, such as electricity or gas consumption. An example of a linear 

model for a baseline model is presented in the following equation. Notice that 𝛼 is a conversion factor 

equals to 2 ∗ 𝜋/(7 𝑑𝑎𝑦𝑠, 12 𝑚𝑜𝑛𝑡ℎ𝑠 𝑜𝑟 24 ℎ𝑜𝑢𝑟𝑠 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒). 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑚𝑎𝑛𝑑(𝑡)

=  234.150 − 4.145(𝐷𝑎𝑦𝑠 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ(𝑡)) − 3.188 sin(𝑀𝑜𝑛𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟(𝑡) ∗ 𝛼)

+ 4.997 cos(𝑀𝑜𝑛𝑡ℎ 𝑛𝑢𝑚𝑏𝑒𝑟(𝑡) ∗ 𝛼) + 5.011 sin(𝐷𝑎𝑦 𝑜𝑓 𝑤𝑒𝑒𝑘(𝑡) ∗ 𝛼)
− 1.906 cos(𝐷𝑎𝑦 𝑜𝑓 𝑤𝑒𝑒𝑘(𝑡) ∗ 𝛼) − 5.795 sin(𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦(𝑡) ∗ 𝛼)

− 36.873 cos(𝐻𝑜𝑢𝑟 𝑜𝑓 𝑑𝑎𝑦(𝑡) ∗ 𝛼) − 13.297(𝐵𝑎𝑛𝑘 ℎ𝑜𝑙𝑖𝑑𝑎𝑦(𝑡))

+ 29.460(𝑊𝑒𝑒𝑘𝑑𝑎𝑦(𝑡)) − 0.0198(𝐷𝑖𝑓𝑓𝑢𝑠𝑒 ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑡))
− 0.0029(𝐷𝑖𝑟𝑒𝑐𝑡 𝑛𝑜𝑟𝑚𝑎𝑙 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑡)) − 0.954(𝑊𝑒𝑡 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒(𝑡))
− 26.077(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡(𝑡) 

 



 

 

 

 

 

 

This linear model can be deployed and plotted alongside the electricity metered data, see figure 2. 

As expected, it has sinusoidal shape during the 24 hours cycle that is modulated (in scale and position) 

for week/weekend/ holiday day, month and weather variables.  

 
Figure 2 Baseline linear model example plotted alongside metered data during March 2017. Notice the limitations in terms of 

flexibility to present hourly variations due to its sinusoidal nature. 

2.2.  Symbolic regression model 

Symbolic regression (SR) is an application of genetic programming (GP) used to solve a large range of 

tasks and is considered one of the most successful applications of GP. SR uses genetic algorithm (GA) 

optimization to create a regression model given a set of inputs and a target value. The pseudo code of 

SR can be defined as: 

 
START 

Generate the initial set of randomly created functions 

Compute fitness (e.g. mean absolute error)  

REPEAT 

    Selection of fittest functions 

    Crossover (combine bits of fittest functions) 

    Mutation (add other random changes) 

    Compute fitness 

UNTIL population has converged to minimum error or reach generation limit 

STOP 

 

This approach generates a human-readable model and can potentially generate complex models with 

similar performance to the ones created using black box machine learning (ML) models, making it a 

balanced option between the simplicity of linear models and accuracy of ML models, SR is therefore 

one of the alternatives being explored in the new field called explainable artificial intelligence (XAI)[9]. 

No literature demonstrating the applicability of SR for baseline models was found and the demonstration 

of its usefulness is the main innovation presented in this work. 

The most relevant parameters are the number of generations (G) and population size (P), which are 

studied in GA literature[10], and parsimony coefficient. As a rule of thumb, the number of generations 

varies from ten to fifty [11]. The selection of this parameter has a large impact in the accuracy of the 

model; higher number of generations tend to increase accuracy of the model, see figure 3. However, a 

higher number of generations has a time penalty during the creation of the model, which explains why 

SR models tend to have a larger calibration time than the other types of models presented in this work. 



 

 

 

 

 

 

 
Figure 3 Example of the impact that generations have on accuracy on the prediction of energy consumption. In the top figure, 

the model was calibrated with 20 generations. The bottom figure, the model was calibrated with 100 generations, and the 

output of the model is closer to the measured data as compared to the top figure. However, the second model required 13 times 

more time to calibrate. 

For the case of  population size the situation is similar, it is impossible to suggest an ideal population 

size as it will vary depending on the application. It was found in literature that this number is generally 

higher than 500 and that various tests should be carried out in order to determine an adequate trade-off 

[11]. 

Increases on the complexity of the functions without significant model improvement is known as 

bloat. The complexity of the candidate solutions is controlled by a parsimony coefficient and it must be 

carefully monitored as it is magnitude dependent.  This parameter is not as relevant as generations and 

population size, but it has an impact on the interpretability of the model. 

Other challenges related to SR are reproducibility, local adaptation for ongoing calibration, and the 

requirement of expert knowledge to generate models through SR.  Scalability issues are also relevant, 

as the complexity grows non-linearly as the number of input variables increases. 

Once the model is trained, the model produced consists of a function that can be exported to any 

platform that can carry out functions, i.e.  sum, multiplication, subtraction, inverse, square root, etc.; of 

time series data. Figure 4 shows a calibrated baseline model created using SR.  

 



 

 

 

 

 

 

 
Figure 4 Graphical representation of a symbolic regression baseline model with an optimal number of generations, 

population size and parsimony coefficient. X1, X2,X3…XN are model inputs in the forms of time series. The output value is 

the final numerical result after being processed by each function (sum, sub, mul, abs, cos, sqrt) in a bottom up approach.   

Figure 5 shows the model in figure 4 being deployed in an online platform capable of performing the 

functions used by the model, i.e. cosine, sine, absolute values, multiplication, sum, etc.  

 
Figure 5 Example of a baseline model created using a symbolic regression model with an optimal number of generations, 

population size and parsimony coefficient. In contrast with the linear model, SR model does a better job representing complex 

patterns existing in the metered electricity values.  

2.3.  Extreme gradient boost model (XGBoost) 

The rising availability of smart meters and analytical tools, such as machine learning (ML), has proven 

to be beneficial for baseline M&V models with increased levels of accuracy as compared to traditional 



 

 

 

 

 

 

statistical models. However, these new techniques have raised concerns regarding interpretability given 

that ML models are algorithms hardly understandable to humans, being this a critical drawback. 

XGBoost models, a type of ML, provide a feature importance feature shows the most relevant 

features for the prediction. Due to their partial interpretability, these models have a number of 

applications in the building sector, from fault detection [12], building demand prediction [13] and energy 

performance grading and benchmarking [14]. 

3.  Quality assessment 

In order to provide a useful description to the M&V practitioner, two types of assessments are presented 

in this document, qualitative and quantitative. Qualitative covers aspect related to the calibration time, 

interpretability and the type of output that can be expected for each model. Quantitative assessment 

focuses on comparing prediction errors for a large set of buildings. Selected parameters for each of the 

models are presented in the following subsection.  

3.1.  Selected model parameters 

Linear model has the parameters indicated in table 1. Parameters not displayed in the table, suggest 

that default values were implemented. 

  Table 1 Linear model parameter values.  

Parameter Value 

Library name sklearn.linear_model.LinearRegression 

fit_intercept True 

normalize False 

 

XGBoost has the parameters indicated in table 2, this model is adapted from the work of [13].  

  Table 2 XGBoost parameter values.  

Parameter Value 

Library name xgboost 

KFold n_splits=5, shuffle=True 

Scoring parameter mean_squared_error 

Number of features for hyper parameter search 20 

XGB max depth 20 

Learning rate 25 values from  0.001 to 0.1,  



 

 

 

 

 

 

  Table 2 XGBoost parameter values.  

Parameter Value 

Number of estimators 20 values from 100 to1000 

Number of iterations 25 

 

The SR model has the parameters indicated in table 3. Notice that a SR model requires more parameters, 

however, they are not presented in this work as the default values were specified.  

  Table 3 SR parameter values.  

Parameter Value 

Library name gplearn 

function_set ['add', 'sub', 'mul','div', 

'sqrt','log','abs','inv','neg','cos','sin','tan'] 

Range of constants Max value is the 95% quantile of the dependent 

variable in the calibration set  

Min is equals to -1*(Max value) 

Population size 12000 

Generations 20  

Parsimony coefficient 0.001 

metric mean absolute error 

 

 

3.2.  Qualitative assessment 

During the M&V process using current guidelines, baseline models should be reported for further 

verification, if required, hence, the type of model output is important. Traditionally, a baseline model is 

reported in the form of a function, indicating the input values, units for both input and output and some 

other uncertainty metrics as defined in [15]. Therefore, the model output is relevant when the M&V plan 

is adhering to IPMVP. 

 A good model should also be easily interpreted. Even when a model can be described with 

mathematical functions, interpretation is not necessarily hassle free. A linear multivariate model of the 

form: 

𝐸 =  𝛽1 + 𝛽2𝑋1 + 𝛽3𝑋2 + 𝛽4𝑋3 + 𝛽5𝑋4 



 

 

 

 

 

 

where: 

𝐸 = Energy use 

𝛽1through 𝛽5 = Coefficients 

𝑋1through 𝑋4 = Independent variables 

 

is certainly easier to interpret than a model created using symbolic regression without an adequate 

complexity penalty (defined as parsimony coefficient), such as: 

 

𝐸 =  𝑋7 − 𝑋1𝑋4 − 𝑋1(𝑋5𝑋16)
1
4 − max(𝑋1, 𝑙𝑜𝑔𝑋5) +

𝑋5

𝑋7 + 𝑋8 + 𝑋16 + sin(𝑋14)
+ min(𝐴, 𝐵) 

 

where: 

𝐴 =  √min(0, 𝑋16) {𝑋7 − 𝑋4 + (√
𝑋5

√𝑋4 + 𝑋7 + 𝑋2

) +
𝑋5

𝑋4 + 𝑋7
} 

𝐵 =
𝑋5

𝑋10
(

𝑋5

√𝑋9 + 𝑋4

+ 𝑋7) √𝑋14 − 𝑋0 

 

which represents a real baseline model with a low interpretability. Yet this model can be considered 

interpretable if it is compared to another algorithm-based model output, such as the one provided by the 

XGBoost model. Algorithm-based models are typically binary files interpretable only by their 

corresponding libraries, e.g. Scikit-learn. The XGBoost model provides the option of displaying feature 

importance but does not provide a full explanation of how a prediction is made.  This is a critical 

drawback for XGBoost models for situations where interpretability is a critical aspect of the project. 

The third and last aspect assessed is the calibration time. There is a direct impact on costs related to 

the time the M&V practitioner spends fine tuning a model and/or creating a large number of models. A 

model that is calibrated quickly gives the practitioner time to consider improvements in data pre-

processing (e.g. feature engineering),  parameter tuning and enables the possibility of on-going re-

calibration, which is relevant on M&V 2.0 applications such as automated analysis [16]. In general, 

linear models have the fastest calibration time, generally under 1 second (fractions of seconds are not 

documented as it is not relevant information from the practitioner’s point of view). XGBoost requires 

some calibration time during the parameter search using gradient boosting, during this work, XGBoost 

presented calibration times varying from 5 to 10 minutes. Finally, the SR model, has the largest variation 

in time. Acceptable results were found using 20 generations and a population size of 12,000, resulting 

in a training time of approximately 12 minutes. Table 4 shows a summary of the quantitative findings 

for the three models.  

 

Table 4 Qualitative comparison of the three baseline models.  

Model Output  Interpretability Calibration time 

Linear  A function in form of 

linear equation. 

High Short (less than 1 second). 

 

Extreme 

Gradient 

Boost 

A file saved in a 

compatible format (i.e. 

*.SAV) with varying size 

depending on the type of 

model (i.e. from 500kb to 

100 mb) 

Generally low, 

depending on the ML 

algorithm. Decision trees 

have some degree of 

interpretability but it 

fades away when 

decision forest are used. 

 Short-Medium. It took 

around five minutes (≈300 

seconds) for calibration a full 

year’s worth of data. 

 



 

 

 

 

 

 

Feature importance is 

useful in many cases. 

 

Symbolic 

regression 

Function with varied 

complexity, usually from 

100 to 500 terms. But it 

can be controlled through 

an adequate parsimony 

coefficient. 

 

High-medium 

(depending on number of 

terms allowed) 

 

Long. It requires a careful 

parameter selection for 

generation, population size and 

parsimony coefficient. In this 

work calibration time is around 

10 to 15 minutes (≈600 to 900 

seconds). 

 

In this assessment, the linear model excels in the three criteria whereas the XGBoost model is the 

worst option for model output and interpretability. The SR model is the worst performing in terms of 

calibration time, but is an intermediate option between the linear and XGBoost models in terms of the 

other properties. 

3.3.  Quantitative assessment  

 

Due to the inherent random component on building loads, the prediction of the demand is always subject 

to prediction errors. These prediction errors can be quantified using a variety of metrics.  

ASHRAE Guideline 14 [4] recommends the use of the Normalized Mean Bias Error (NMBE), which 

is defined as 

𝑁𝑀𝐵𝐸 =
∑ (𝑦𝑖 − 𝑦̂𝑖)𝑛

𝑖=1

(𝑛 − 𝑝) ∗ 𝑦̅
  

 

NMBE is an indication of the overall bias of the model, in other words, it quantifies the tendency to 

over or under estimate predictions for a defined period. This metric is independent of time and it can 

result in overall positive or negative bias cancelling.  

Also recommended by ASHRAE is the Coefficient of Variation of the Root Mean Squared Error 

(CVRMSE), defined as: 

𝐶𝑉𝑅𝑀𝑆𝐸 =  

√
∑(𝑦𝑖 − 𝑦̂𝑖)2

(𝑛 − 𝑝)

𝑦̅
 

 

The CVRMSE is a normalized version of the root mean square error (RMSE), which quantifies the 

accuracy of the prediction, using the standard error, divided by the mean demand.    

The coefficient of determination (𝑅2) is a useful metric to assess how much of the demand is 

predicted by the model, it is also known as “goodness of fit” or “degree of correlation”. 𝑅2 ranges 

between 0 and 1, with 0 representing no correlation and 1 representing perfect agreement between the 

model and the metered data. In practice, this metric is used only to perform initial checks in the model 

and a low 𝑅2 value might indicate the absence of relevant independent variables or that the model has 

an incorrect functional form. 

𝑅2 = 1 −  
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑛=1

∑ (𝑦𝑖 − 𝜇)2𝑁
𝑛=1

 

Other useful calibration metrics have been suggested, such as the Range-Normalized Root Mean 

Squared Error (RNRMSE), which eliminates the scale-dependency that the CVRMSE metric presents 

making it a robust metric to compare model performance when presented alongside the 𝑅2 [17]. The 



 

 

 

 

 

 

Unscaled Mean Bounded Relative Absolute Error (UMBRAE) also is useful when assessing time-series 

forecasting as it is resistance to outliers, symmetric, scale-independent, and interpretable [18]. 

In this paper, only the NMBE and the CVRMSE metrics will be considered due to their familiarity 

across the M&V industry. Research has shown that the combination of these two metrics are effective 

quality indicators[19]. Additionally, the extraordinary large number of buildings used for quantitatively 

assessing the models is expected to compensate the potential flaws of these two metrics. Initial model 

check is presented using the 𝑅2  achieved during the calibration phase. 

The quantitative assessment is performed by calculating the three modeling approaches with the 

advanced M&V assessment portal. This portal has been released to the general public in May 2019 with 

the intention of fulfilling the industry demand for objective testing methods and benchmarking of 

advanced M&V modelling tools [20].  

The datasets that are provided for testing models include buildings of different uses, characteristics 

and climate zones ensuring that the model can deal with a variety of situations, ensuring (to a certain 

extent) robustness. The buildings from which the datasets were generated have no known EE projects 

and data have been cleaned from gross anomalies. This portal provides information from 367 meters.  

Model predictive capability is carried out through out-of-bag estimates, meaning that a test dataset 

is kept away from the calibration data set. A series of 12-month datasets containing time (input), ambient 

temperature (input) and energy consumption (output) are provided for calibrating the models, then a 

testing dataset containing only time and ambient temperature is used as the input of the calibrated model 

to generate predictions which are submitted to the portal for its corresponding assessment. Figure 6 

shows conceptual example of this process. 

 
Figure 6 Out-of-bag estimate example. If left-hand side, metered data and ambient temperature (top) is used to calibrate the 

models. During the prediction period, right-hand side, ambient temperature is provided and the calibrated model is used to 

predict the actual metered value. Actual metered values from the prediction period are hidden and only accuracy metrics are 

reported back. 

Prediction results are provided as the median of scores across the predicted energy consumption in 

all the 367 meters.  

i) Calibration period results 

The coefficient of determination, CVRMSE and NMBE are plotted in figures 7, 8 and 9 respectively. 



 

 

 

 

 

 

Coefficient of determination is presented only to provide a more complete comparison between 

models. As discussed before, a low 𝑅2 tends to be indicative of the overall model competence for the 

prediction. 

Notice that these metrics should not be used as an indicative of accuracy on the unseen data but rather 

as the flexibility of the model to fit data used for calibration. An excess on the flexibility of the model 

might lead to overfitting, hence it should be controlled for improved predictions. 

 

 
Figure 7 Coefficient of determination model results for the calibration dataset.  

 

 
Figure 8 CVRMSE model results for the calibration dataset. 



 

 

 

 

 

 

 
Figure 9 NMBE model results for the calibration dataset. Notice that due to the nature of the linear model calibration, a NMBE 

close to 0 is part of the calibration requirements.  

ii) Prediction period results  

Prediction results for each of the models are summarized in the following tables. Results consist on the 

median, 25th and 75th percentile CVRMSE and NMBE for each of the studied model types. Equivalent 

calibration results are also provided only for guidance. All prediction results have a bias correction using 

the NMBE obtained in the calibration results. It is worth mentioning that specific prediction results are 

never provided to avoid M&V tools to be “tweaked” to outperform in this specific test, hence, a more 

detailed whisker box plot as the one presented in the calibration results section is not possible to 

generate. 

The results are presented in table 5, 6 and 7 for the linear, SR and XGBoost models respectively. 

Table 5 Linear model results in the calibration and test dataset. CVRMSE and NMBE percentiles 

after predicting 367 energy meters. 

 
CVRMSE (%) NMBE (%) 

Percentile Calibration Test Calibration Test 

25th 20.44  26.06 0  -10.32 

50th (median) 26.87  40.65 0  0.54 

75th 37.19  71.78 0  11.03 

 

 



 

 

 

 

 

 

Table 6 Symbolic regression model results in the calibration and test dataset. CVRMSE and 

NMBE percentiles after predicting 367 energy meters. 

 
CVRMSE (%) NMBE (%) 

Percentile Calibration Test Calibration Test 

25th 19.21   26.03 -3.39   -11.34 

50th (median) 25.05   39.67 -1.08   0.46 

75th 33.68  73.47 0.68    11.64 

 

 

Table 7 XGBoost model results in the calibration and test dataset. CVRMSE and NMBE 

percentiles after predicting 367 energy meters. 

 
CVRMSE (%) NMBE (%) 

Percentile Calibration Test Calibration Test 

25th 4.49 23.97 -0.039  -11.35 

50th (median) 5.89  37.17 -0.035 -0.52 

75th 8.00 72.42 -0.031  9.58 

A summary of the test results is presented in figure 10, where the linear (red triangle), SR (green 

circle) and the XGBoost (blue square) models are displayed in terms of median CVRMSE and NMBE. 

 
Figure 10 Test results summary. Linear model (red triangle), SR model (green circle) and the XGBoost (blue square) results 

are displayed in terms of median CVRMSE and NMBE. 



 

 

 

 

 

 

It can be noticed that linear model performs significantly well in terms of NMBE. This might suggest 

that for applications where prediction is presented in an aggregated way (i.e. monthly, yearly), linear 

model is a viable option.   

XGBoost model has the highest prediction accuracy in terms of CVRMSE. However, as described 

in the qualitative section, interpretability has been given up in exchange of improved accuracy.  

SR model showed an improved median CVRMSE compared to the linear model option and has the 

best median NMBE overall, suggesting that when interpretability is required and calibration time is not 

the main constraint, this model is the best option for time-series predictions. 

Prediction results can be likely further improved by implementing change point detection algorithms 

for all three models [21]. Model specific follow up actions include parameter optimization in the 

XGBoost model for number of estimators to reduce potential “overfitting”, defined as the 

overrepresentation of the calibration data set reducing prediction accuracy on the unseen testing dataset. 

Parameter tuning can be also implemented in the SR model for the constant range, population size and 

parsimony coefficients to reduce its large variability on the calibration results, as shown in figures 7, 8 

and 9. 

4.  Conclusion and future work 

Measurement and verification (M&V) is the process of quantifying energy savings originated by one or 

several ECMs in an existing building. During the M&V process, the adjusted baseline is used to 

represent the energy consumption of the building without the ECM for the reporting period.  Hence, 

estimated savings are the difference between the adjusted baseline and the current energy consumption 

of the whole building. In this work, Linear, Symbolic Regression (SR) and XGBoost models were 

compared quantitatively and qualitatively from a practitioner’s approach. The use of the SR models for 

M&V is the main innovation presented in this work. 

Qualitative comparison included model output, interpretability and calibration time. In this 

assessment, linear model excels in the three criteria whereas the XGBoost is the worst option for model 

output and interpretability. The SR model is the worst performing in terms of calibration time, but is an 

intermediate between the linear and XGBoost models in terms of the other properties. 

Regarding the quantitative assessment, the XGBoost model has the highest prediction terms of 

CVRMSE. Linear model performs significantly well in terms of NMBE. This might suggest that in 

applications where prediction is presented in an aggregated manner (i.e. monthly, yearly) linear model 

is a viable option. SR model showed an improved median CVRMSE compared to the linear model 

option and has the best median NMBE overall, suggesting that when interpretability is required and 

calibration time is not the main constraint, this model is the best option for time series predictions . 

Prediction results can be likely further improved by implementing change point detection algorithms 

for all the three models [21]. Model specific follow up actions include hyper-parameter optimization in 

the XGBoost model for number of estimators and for the SR model for the constant range, population 

size and parsimony coefficients. 
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