ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320197023

A Data-Driven Modelling Approach for Large Scale Demand Profiling of
Residential Buildings

Conference Paper - August 2017

CITATIONS READS
0 173

5 authors, including:

Giovanni Tardioli Ruth Kerrigan
\ Integrated Environmental Solutions

12 PUBLICATIONS 39 CITATIONS

5 PUBLICATIONS 19 CITATIONS
SEE PROFILE

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roiet  THERM - THrough life Energy and Resource Modelling View project

et CINERGY - Smart Cities with Sustainable Energy Systems View project

All content following this page was uploaded by Giovanni Tardioli on 04 October 2017.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/320197023_A_Data-Driven_Modelling_Approach_for_Large_Scale_Demand_Profiling_of_Residential_Buildings?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320197023_A_Data-Driven_Modelling_Approach_for_Large_Scale_Demand_Profiling_of_Residential_Buildings?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/THERM-THrough-life-Energy-and-Resource-Modelling?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CiNERGY-Smart-Cities-with-Sustainable-Energy-Systems?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni_Tardioli?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni_Tardioli?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Integrated_Environmental_Solutions?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni_Tardioli?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruth_Kerrigan?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruth_Kerrigan?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruth_Kerrigan?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giovanni_Tardioli?enrichId=rgreq-82c0afa59cf2dd48cff88008890b893c-XXX&enrichSource=Y292ZXJQYWdlOzMyMDE5NzAyMztBUzo1NDU2NjQzMjY4MDM0NTZAMTUwNzEwNzkyMTUxNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Data-Driven Modelling Approach for Large Scale Demand Profiling
of Residential Buildings

Giovanni Tardioli'?, Ruth Kerrigan', Mike Oates!, James O’Donnell?, Donal Finn?
1: Integrated Environmental Solutions (IES) R&D, Glasgow, UK
2: School of Mechanical & Materials Engineering, University College Dublin, Dublin, Ireland

Abstract

In this paper the traditional use of data-driven models
(DDM) as forecasting tools is coupled with paramet-
ric simulation to create a building modelling frame-
work for demand profiling of a large number of build-
ings of the same typology. Most studies to date util-
ising DDM have been conducted on single buildings,
with less evidence of the role that DDM may have
as a modelling technique for application at scale.
The proposed methodology is based on the use of
a simulation-based building energy modelling tool
and a parametric simulator to create a large dataset
consisting of 4096 different building model scenarios.
Three DDM techniques are utilised; Support Vector
Machines, Neural Networks and Generalised Linear
Models, these are trained and tested using the gener-
ated simulation dataset. Results, at an hourly reso-
lution, show that DDM approaches can correctly em-
ulate the outputs of the building simulation software
with mean absolute error ranging from 4 to 9 percent
for different DDM algorithms.

Introduction

Modelling building energy use at a high spatio-
temporal resolution and at large scale is a computa-
tional and resource intensive problem. Several issues
increase the difficulty in modelling a vast number of
buildings, these include but are not limited to: het-
erogeneity of the built environment, possible lack of
building data, high computational requirements for a
simulated representation of the building stock, uncer-
tainties related to building information and modelling
procedures, linking of structured and unstructured
data, complexity in representing interconnected phys-
ical phenomena and difficulties in providing scalable
and replicable solutions. Overcoming all these issues
requires substantial research effort.

Simulating building consumption at different levels of
spatial and temporal resolution, facilitates the adop-
tion of a variety of energy efficient technologies and
operations, ranging from deep retrofit interventions
to demand side management actions. For this reason,
different levels of spatial analyses may be required,
e.g. national, regional, urban, district and single
building level. Based on the objective of the anal-

ysis, different time scales may also be appropriate,
i.e. annual, monthly, daily, hourly and sub-hourly.
On one hand, techniques for modelling and analysing
single building energy use are mature and well consol-
idated; on the other, modelling at fine time resolution
and at large scale, such as at district or city level, is
an emerging field where there is still a lack of vali-
dated procedures and standardisation Reinhart and
Dayvilal (2016]).

In recent years, different modelling techniques have
been proposed for the representation of building en-
ergy use at large scale. These methods and tech-
niques, use mostly a bottom-up modelling approach
and can be divided into three major categories:
the engineering or physical approach, the hybrid
approach and the data driven modelling approach
Eicker et al.[(2015]). These techniques, were first used
for single building applications but have been recently
adopted for studies involving a vast numbers of build-
ings Swan and Ugursal (2009)). In particular the engi-
neering method and the hybrid approach find several
applications in the context of large scale modelling
Fonseca et al.| (2016, Robinson et al. (2009). Other
large scale studies employ the use of representative
building energy models, usually called archetypes,
to represent a portion of the building stock |Ballar-
ini et al| (2014). These representative models are
usually identified through statistical approaches but
more recently through clustering techniques. These
techniques aim to isolate building groups sharing sim-
ilarities and permit the identification of the most rep-
resentative element of the cluster.

Most of the studies on data driven models (DDM)
focus on single building level applications; the major-
ity of these studies investigate DDM as forecasters of
individual building electric and heating consumption.
In this context DDM are employed for demand side
management and demand response analysis [Burger
and Moura| (2015) or in predictive control systems
Ferreira et al.| (2012). Few studies focus on the use of
DDM at large scale and when they do they analyse
aggregated groups of buildings or predictive methods
for yearly or monthly estimated consumption. Other
studies show that DDM can exploit large scale mod-
elling techniques to provide early design consump-



tion information. There are currently no methodolo-
gies based on data-driven methods, which are used as
building demand profiling techniques at large scale.
DDM characteristics could be exploited to alleviate
the modelling burdens associated with large scale ac-
curate simulations at district or urban level where
simplified methods and computational issues are of
interest.

The aim of the current paper is to describe a scal-
able methodology based on the use of DDM as a de-
mand modelling technique for large numbers of build-
ings and to test the proposed approach on a case
study. The methodology is based on the exploita-
tion of a representative building energy model and
the use of parametric simulation to create a database
for the training of the DDM. The representative en-
ergy model could be representative for example of the
outcome of a clustering analysis procedure conducted
on an urban case study |Ghiassi et al.| (2015]).

The paper is structured as follows. Initially, a com-
prehensive review of data driven modelling techniques
utilised in the building energy domain is presented;
then, the research "gap” is identified and described;
following this, the research methodology is discussed
and explained in detail as well as the underlining
contribution and novelty of the present work; the
methodology is then tested on a case study and fi-
nally a description of the main outcomes of this ap-
proach is provided. The strengths and limitations of
the presented approach are discussed and scope for
further research is presented taking into considera-
tion the deployment of the technique at an urban or
district level.

State of the art

There are many examples of the use of DDM in the
building energy sector. Table [I| provides an overview
of the main applications of DDM. Specifically, the
table provides information regarding the algorithms
employed and summarises the main inputs, outputs
and resolution of the data. Furthermore, Table[]pro-
vides a useful insight regarding the scale of analysis
and level of aggregation of the case studies.

The majority of the studies concerning DDM are re-
lated to single building level applications. In this
regard, DDM are employed mostly as forecasters of
building energy consumption. [Edwards et al.| (2012])
compared seven different machine learning algorithms
trained on 15 minute consumption data of a residen-
tial case study. |Jain et al.| (2014) developed a sensor-
based forecasting model using support vector regres-
sion (SVR), for a multi-family residential building un-
derlining the impact of temporal (i.e., daily, hourly,
10 min intervals) and spatial (i.e., whole building,
by floor, by unit) granularity. [Fan et al| (2014) de-
veloped an ensemble model for a commercial build-
ing for predicting next-day energy consumption and
peak power demand, using a genetic algorithm for

parametric optimisation. Macas et al.| (2016) pro-
posed a technique based on artificial neural networks
(ANN) to predict total heating energy consumption,
internal air temperature and aggregated thermal dis-
comfort 12 hours ahead, for operational cost reduc-
tion of an office building. |Mai et al.| (2014) presented
an hourly electric load forecasting model for an of-
fice building based on a neural network using out-
door weather data and historical load data as inputs,
proposing a simplified parameter tuning procedure.
Yang et al.[(2014) proposed a model to predict energy
consumption for a chiller using historic building oper-
ation data and weather forecast information. [Paudel
et al.| (2014) presented a predictive model of an insti-
tutional building to predict heating demand with oc-
cupancy profiles and operational heating power levels
for short time horizon predictions. [Kapetanakis et al.
(2015) developed DDM for forecasting a commercial
building heating loads based building energy manage-
ment systems variables and weather data, presenting
an inputs selection technique. [Li and Wen| (2014)
proposed a methodology to develop building energy
estimation models using frequency domain spectral
density analysis for a commercial building.

Compared to single building level applications, there
are fewer studies which involve the use of DDM on
groups of buildings. Consumption data are usually
aggregated when the study is performed on more than
one building. Data are typically gathered from elec-
tric or heating network substations or from building
management systems controlling the entire group of
buildings. Some relevant examples in this context
are studies conducted on university campuses |[Powell
et al. (2014)). [Escriva-Escriva et al.| (2011) created an
ANN model for short-term prediction of total power
consumption for a large group of university buildings.
Jurado et al.| (2015) proposed a hybrid methodology
for three university buildings which combines feature
selection based on entropy measures and DDM. |Jo-
vanovi¢ and Zivkovi¢| (2014) proposed a method for
predicting heating energy consumption of 35 build-
ings using an ANN. [Humeau| (2013) studied statisti-
cal relations between consumption series data by clus-
tering houses according to their consumption profiles
and using DDM to estimate aggregate district con-
sumption. Other applications of the use of DDM at
an aggregated level are typically performed by utility
companies which employ data analysis on smart me-
tering systems and the use of DDM to estimate peak
power demand for entire districts. This helps utilities
forecast the supply requirements with respect to buy-
ing or trading on energy markets at convenient prices
or to identify stressed points of the network and to
plan ahead network maintenance and upgrades.

At district or city scale, Nouvel et al.| (2015)) and
Howard et al| (2012) focused on forecasting building
consumption for many single buildings at a yearly res-
olution. [Williams and Gomez (2016) proposed an ap-



Table 1: DDM applications from single buildings to large groups: time resolution, algorithms, inputs and outputs
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proach based on DDM to predict monthly consump-
tion, using regression approaches based on a variety
of building features.

Recently, research studies showed the possibility of
coupling DDM and parametric simulation. [Chou and
(2014),Tsanas and Xifaral (2012)), |Catalina et al.
(2008) showed that DDM are able to provide early
stage design consumption information for a large
number of buildings. In addition, these studies un-
derlined the possibility of using DDM not only as a
forecasting technique but also as modelling technique.

Another interesting point of the literature review pro-
cess is that the most employed DDM algorithms are
neural networks, support vector machines and mul-
tiple linear regression. Regarding input variables,
weather data and time variables are among the most
common, along with other information such as build-
ing energy consumption. The prediction horizon
varies dependent on the nature of the application.
Usually, forecasting is performed at an hourly or sub-
hourly basis. The principal targets of the prediction
are electric consumption and thermal requirements
both for heating and cooling. In addition, from the
literature, it is evident that the use of DDM as an
accurate forecasting tool is limited to single build-
ing applications or aggregated case studies of groups
of buildings. At district or city scale, DDM are em-
ployed for single buildings predictions with an annual
or monthly resolution. Recently DDM have been em-
ployed as large scale modelling techniques for early
stage design power demand estimation.

Hence it is evident that there are no applications and
methodologies where DDM is used as a modelling
technique at large scale to provide accurate profil-
ing information at a low time resolution. Thus, the
present paper and the following sections present a
scalable methodology associated with the use of DDM
as large scale modelling technique to provide estimate
building power profiling information at an hourly res-
olution.

Methodology

The approach adopted in this work couples DDM
with a parametric simulation framework for provid-
ing demand information of residential buildings at a
hourly time resolution. The methodology is based on
the use of a representative building energy model and
parametric simulation to create a database for the
training of a DDM. The parametric simulation allows
the creation of a virtual large scale scenario composed
of similar but different buildings of the same typology
by changing building related parameters such as con-
struction detail, internal gains, glazing surfaces, etc.
The representative energy model could, for example,
be an urban archetype representative of a large part
of the building stock.

Figure [I] provides a concise overview of the research
methodology. First, a building energy model (BEM)

BUILDING
ENERGY
MODELLING L iy BEM

N l
____________ Energy model file
description

PARAMETRIC l l

SIMULATION

Parametric
ot simulator

l

v
g ............. Database

APPLIED i
PREDICTIVE N Data-driven
MODELLING -+ 7 modelling
MAPE Prediction

""""""" accuracy
measures

RMSE

Prediction results
and visualisation

Figure 1: Methodology overview

of a residential building is created, i.e. the baseline
model. A file description is then extracted from the
energy model and provided as an input to a para-
metric simulator. A number of energy related input
variables are then defined; these are applied to the
BEM using the parametric simulator; as a result a
large synthetic dataset of BEMs is generated. These
BEMs are similar but different variations of the base-
line model. Outputs from the synthetic dataset, in-
cluding hourly power data for both electricity and
heating requirements, are then stored in a database.
The DDM is then trained with the information from
the database and prediction accuracy measures are
evaluated. Based on results of prediction accuracy it
is possible to evaluate the reliability of the presented
modelling framework and to rank different DDM ap-
proaches based on their predictive performance on the
case study.

Building energy model(BEM)

The first step of the methodology requires the cre-
ation or the use of a Building Energy Model (BEM).
The case study is a mid-terraced house in Scotland.
The house is part of an eco-village and part of a group
of similar buildings. The mid-terraced house consists
of two floors with a total floor area of 166m? and a to-
tal volume of approximately 359m3. The total exter-
nal wall area is approximately 122m? and the external
openings area is approximately 29m?. A rendering of



Figure 2: Building energy model: rendering

Table 2: Construction properties

Category U  value Thickness
(W/m?K)  (mm)

External Wall 0.14 359
Internal Partition 1 1.79 75
Ground/Exposed Floor 0.22 268
Door 2.19 37
Internal Ceiling/Floor 1.08 283
Roof 0.09 481
Internal Partition 2 0.77 226
Internal Partition 3 0.14 350
Roof Light 3.10 24
External Window 1 1.24 24
Internal Ceiling/Floor 1.10 113

the energy model is displayed in figure [2}

Opaque surfaces are modelled considering roof, ceil-
ing, external walls, internal partitions, ground floor
and doors. Glazed surfaces include roof-lights, ex-
ternal glazing and internal glazing surfaces. Table 2]
summarises construction properties and the thermal
transmittance assigned to the construction compo-
nents.

The heating system is characterised by an air source
heat pump (air to water system) with an average sea-
sonal coefficient of performance (COP) of 3.1. The
heat pump is connected to a solar heating system
with a surface area of 2.6m?2. The overall system pro-
vides domestic hot water and the thermal require-
ments for the building. An underfloor heating sys-
tem distributes heat in the house. Electric heaters
are available as auxiliary source of heat acting as a
surplus, directly controlled by the occupants. Room
set points have been defined using information from
thermometers when available. Heating set point is set
at 20°C. The heating system is modelled to run con-
tinuously during the period of simulation. Cooling
systems are not present in the building; if required,
cooling is provided by natural ventilation in summer
periods. Occupant presence is modelled defining a
value of 22 m? /person and an occupant presence pro-
file for the period of simulation. Equipment and light-
ing gains are modelled considering sensor data when

available to create variation profiles and assigning a
peak value in W/m?. For lighting and equipment,
values in W/m? are assigned: 2W/m? and 34W/m?,
respectively. Furthermore, the energy model is devel-
oped taking into account information regarding floor
plans, sections, elevations, construction, internal tem-
perature sensors, flow and return temperature of heat
pump, solar system and underfloor heating, flow mea-
surement of heat pump, solar systems and underfloor
heating, electrical meters data from lighting, ground
floor sockets, first floor sockets, heating and main
feed.

Parametric simulation

The building simulation model is incorporated in a
parametric simulation framework. Parametric sim-
ulation is applied to a number of parameters which
have significant impact on building requirements and
these include: transmittance of external walls, trans-
mittance of glazing surfaces, orientation of the build-
ing, infiltration rates, internal gains due to occu-
pancy, lighting and equipment; the internal gains due
to occupancy, lighting and equipment are grouped to-
gether and considered as a single parameter. Percent-
ages of variation are applied to each of the six selected
variables. No assumptions are made on the distri-
butions of percentage of variations of the parameters
and their values are decided on the basis of a range of
realistic values for the typology of the building. The
total number of simulations created by the process
is equal to the product of the number of variations
considered for each variable. Equation [I| provides the
mathematical description of the process:

K
Ns = H ng (1)
k=1

Ns=n* (2)

where Ns is the number of simulations, K is the total
number of variables, n is the number of values the
variable k can have. Equation |[1| becomes equation
if the number of values is the same for all the para-
metric variables. In this study a total number k of
6 variables is considered with n, = 4 variations ex-
pressed as percentage of the baseline model. Table
summarises the variables considered in this study.
Four possible variations are associated to each vari-
able. Therefore, with reference to equation[2]the total
amount of simulations Ns is : 4096.

The parametric procedure is performed with the soft-
ware IES-VE and its associated parametric simulator.
The parametric simulator allows the management of
batch simulations and to collect output data of each
simulation. Scripting is performed in the program-
ming language Lua. Thus, data is generated for 4096
different simulations for a two month period (Novem-
ber and December, 2014). Simulations are run with



Table 3: Parametric simulation: variables and values

baseline units variations
U-values (external walls) 0.14 W/m?K  0.11 0.17 0.21 0.25
U-values(glazing surfaces) 1.24 W/m?K  0.93 1.55 1.85 2.17
Orientation - deg 90 180 270 0
Infiltrations 0.15 ach 0.3 0.45 0.6 0.75
Glazing surface 32.3 m? 25.5 28.7 35 38.2
Internal gains
Occupancy 22 m? /person 17.6 26.4 28.6 33
Lighting 2 W/m? 1.6 2.4 2.6 3
Equipment / miscellaneous 34 W/m? 27.2 40.8 44.2 51

Initial dataset output of the
parametric simulation

e .

h % —— reshaping

Initial random
data sampling ﬁ
40000 points l 3

Resampling technigue and
parameters tuning

|

Performance estimation
MAPE RMSE and model
selection n
Random
I—)% 5 sample of

7

40000 points

Final performance estimation
MAPE RMSE

|

Results 7
visualization

Figure 3: Predictive modelling methodology

at an hourly time step resolution. The selection of 2
months of simulations is due to limit the very large
output dataset obtained from the parametric study.
A total of 5,996,544 simulation results regarding aver-
age electric demand of the building are collected and
merged together with the weather data. This dataset
acts as the input to the data-analysis process for the
creation of a predictive model.

Applied predictive modelling

Figure [3] shows the methodology regarding the cre-
ation of the applied predictive modelling. Initially,
data output of the parametric simulation (1) are or-
ganised and reshaped in a data-base structure (2).
The statistical software R is employed for the follow-
ing steps. An initial random sample is selected from
the overall dataset for the purpose of model training
and model selection. In addition, randomly sampling

the dataset may artificially recreate conditions of data
scarcity and sparsity: a possible condition in large
scale modelling. The selected subset is of 40,000 out-
put values corresponding to 40,000 different hourly
simulation outcomes (3). Three common predictive
models found in the literature (support vector ma-
chines (SVM), neural networks (NN) and generalised
linear models (GLM)) are used for predicting aver-
age hourly electric demand. Inputs to the models
are weather variables and values of the parametric
simulations. Parameter tuning and the selection of
the most accurate predictive model is then performed
adopting a re-sampling technique, the k-fold cross
validation method. The procedure creates k groups
of samples of equal size called folders. A model is
trained using all the folders except one. Thus, the
model is used to predict values of the hold-out folder
and to compute performance measures. The proce-
dure is repeated several times, shuffling training and
testing folders, to perform an algorithm parameter
tuning procedure. In this study, a total number of 10
folders is created to perform parameter tuning and
best model selection. As a result, accuracy measures
are evaluated for each model. The best model is the
one that produces the minimum value of the two in-
dices: mean absolute percentage error (MAPE) and
root mean square error (RMSE)(4). Thus, in order
to test the effective performance of the models on an
unseen dataset, another large sample (40,000 points)
is selected randomly from the remaining initial data
(5). MAPE and RMSE are evaluated again on the to-
tal unseen dataset (6). Finally, results are visualised
in different ways to help the modeller to understand
which model performs best (7).

Results
Predictive models performance

Predictions of the three models (SVM, NN, GLM) are
compared with the parametric simulation results to
assess the capability of DDM for emulating outputs of
the building simulation software. Figure [4 represents
the comparison between simulated and predicted out-
puts. The output variable compared in Figure[]is the
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2014)

average electricity demand, averaged over 60 minutes.
Another way to assess the accuracy of the predictive

models is to graph predicted and simulated data in
terms of residuals defined in equation [3]

r=s-p (3)

where s are outputs of the parametric simulation, p
outputs of the predictive models. Figure 5] shows the
results of this visualisation technique; if the oscilla-
tion of the results is close to 0, it means that simula-
tion and prediction data are similar. Residuals help
the modeller to understand if the model performs par-
ticularly well or not in defined situations (e.g. pre-
diction capability for low or high demand values).

Next month prediction

In order to test the potential of the presented ap-
proach in predicting building requirements in differ-
ent scenarios, the procedure is repeated considering
only the month of November as the training month
and the month of December for testing phase. Hence,
training is performed providing, in addition to the
input explained in the methodology, the electric and
heating requirements of the baseline building. Hourly
average electric and heating demand are the target
variables. The results are visualised in Figure [f] and
Figure[7| both in terms of predicted against simulated
results and in terms of residuals. Thus, MAPE and
RMSE are evaluated.



IS
o
s}
s}

[
o
o
o

n
o
o
o

-
o
S
S

1000 2000

@
S
e

@
1]
e

i
»‘J‘w““““h‘ il

i

Q

|
@
S
e

|
o
S
e

1000 2000

Residuals Average Demand (hourly) [W] Average Demand (hourly) [W] predicted

RMSE= 149.8 [W]
MAPE= 6.77

3000 4000

Average Demand (hourly) [W] test set

ARG

3000 4000
test set

Figure 6: Predictive modelling (SVM): next month prediction, simulated vs predicted outputs (total electricity)

3000+

2000+

1000+

1000

Average Demand (hourly) [W] predicted

600-

300- i

—300-

—600-

Residuals Average Demand (hourly) [W]
o

1000

RMSE= 162.87 [W]
MAPE= 9.57

2000 3000

Average Demand (hourly) [W] test set

LT

2000 3000

test set

Figure 7: Predictive modelling (SVM): next month prediction, simulated vs predicted outputs (heating)

Discussion
Prediction algorithms

Comparing the three predictive models underlines dif-
ferent accuracy and prediction capabilities. From the
analysis of the predicted against simulated results it
is evident that quantitatively all the algorithms per-
form well. Predictions are well aligned to the diagonal

line meaning that the algorithms generalise well on
the testing set. Model comparison can be performed
by the means of quality indices such as MAPE and
RMSE. The RMSE ranges from 195 W, 171 W, and
138 W for SVM, NN and GLM approaches, respec-
tively. The MAPE values range from 5 for SVM, 7
for NN and to 8.20 for GLM. As such, it is evident
that the SVM is the model which performs best. Vi-



sualisation of the residual between predicted and ac-
tual results helps to understand if the models perform
well with respect to a determined range of outcome.
Both generalised linear model and neural network do
not have good performances for low and high demand
values. This is easily understandable looking at the
prediction results which are averagely skewed for low
and high requirements. SVM seems to perform with a
constant accuracy on average in all the range of pos-
sible outcomes. This confirms that its performance
are the best of the three models for this analysis.

Next month prediction

The previous analysis showed that SVM out performs
the other algorithms, hence, it will be deployed as
the predictive approach in this analysis. In this case,
the model is required to predict unknown conditions
such as the one generated from next month weather
variables. Output targets are average electricity and
heating demand, averaged over 60 minutes for all the
simulated buildings. The results show that by in-
creasing the prediction horizon and testing the pre-
dictive capabilities for unknown conditions, the model
is still able to perform well with a MAPE of 6.77 for
the electricity demand and 9.57 on the heating re-
quirements.

Conclusion
Possible uses of the predictive model

DDM integrated within a parametric framework are
able to accurately predict outputs of large sets of dif-
ferent building simulations. This could lead to further
research in investigating the use of DDM as a mod-
elling technique in studies involving a vast number of
buildings. A trained DDM could be employed for in-
vestigating different building scenarios. For example
it may be employed to assess the effect of changing to-
tal transmittances, internal gains magnitudes, glazing
surface options, orientation, changes in building air
tightness of the baseline model. Most of the variables,
appropriate in retrofit analysis, may be evaluated us-
ing a trained DDM. A similar approach may be as-
sumed for characterising and to predict the demand
of a group of buildings of the same typology of the
baseline model. The level of detail of the outcomes
allows investigation at different level of aggregation
commencing with single buildings and extending to
entire groups.

Advantages and limitations of the proposed
approach

A trained predictive model can produce fast and re-
liable results (in the range of identified errors). This
may be beneficial in large simulation studies with sim-
ilar building typologies (e.g. district or city level),
where a large number of constructions affect the sim-
ulation time and modelling complexity. However, the
proposed approach presents a series of limitations due
to modelling assumptions that must be taken into ac-

count in order to define important improvements. In
particular, a series of assumptions must be relaxed.
Geometry is typically not homogeneous in an urban
environment. The heterogeneity of construction de-
fines volumes, areas, adjacencies and shading effects:
all of these variables highly influence modelling out-
comes. Heating, cooling and electricity systems and
their efficiencies change from building to building due
to different configuration and operations. Occupant
behaviour is highly unpredictable, it defines internal
gains schedules and operation of a building, thus it
is an important factor in determining the demand
pattern especially in the residential sector. All the
aforementioned issues must be considered for improv-
ing the reliability of the presented approach. On the
other hand, the scalability of the proposed technique
may play a key role in improving its ability to repre-
sent realistically an urban environment. The flexibil-
ity of the parametric approach guarantees the possi-
bility to increase the number of relevant parameters
in the analysis and enhance the capability of DDM to
represent more realistically a large scale context.
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