
Python in the VE

VE Scripts – APS / Vista variables & units

This VE Script is an example of a number of aspects including us ing the results interface, getting user inputs
from a dialog (GU)I and writer output to a spreadsheet. For the purposes of this example we will concentrate
on structure and the APS data rather than the GUI aspect which we will cover in a later article .

GUI elements are event driven; they
require an event loop that waits for a
user to press something. This line
starts the event loop

This VE Script interrogates an APS file and lists all the variables with display & units data. It provides a utility
that will find useful when accessing results from VEScripts . Also provided with th is article is a reference sheet
that defines the units types that are reported by the script and utilised in the VE.

Why?

What?

Script workflow – start, middle & end:

Script GUI – middle:

We are showing the start, middle &
end of this script firs t to explain how
it is executed

Import the modules whose methods
we intend to use in the script.
We import the Tkinter package (a
number of modules that provide GUI
elements) but rename it to tk for
convenience as we will call
tk.module.method which we do not
want to be too long

The middle part of this script is where
we have defined a function (a block
of code that runs when called), in this
case for a tk dialog. A function must
de defined ahead where it is called

The end part of this script is where
the script s tarts executing ...

First we call some methods to define
the parameters we will pass to the
function that starts the GUI

if __name__ == '__main__' is a guard
to prevent accidently invoking the
script from another script i.e. you
must call it’s functions. It is also
where you can set parameters to test
values that are only used when the
script is run directly

We then call the function that starts
the GUI

The middle is sho wn collap sed s o you
can see the structure; we will look at
tk GUI details more in a later article,
but in s ummary ...

We define an instance of tk window
class

We define a special function called a
constructor for the class object
(__***__) that initialises the object; it
in turn calls init_window

We define functions for the GUI
elements that are then called from
init_window

This function creates the GUI. Any
variables we want to access outside
of each function is prefixed with self
to signify it belongs to the class

We create an instance of the Tk root
widget (window, title bar etc.)

We pass the root widget as a
parameter to an instance of class
window; this adds all the buttons etc

Script – save function:
The save function is where we do all
the work with the aps file and export
it to a formatted spreadsheet ...

We call a datetime module method to
get todays date so we can write this
to the output

We call the GET method for the
tkinker listbox object to get it’s value

We check if the user has picked a an
APS file; if not we pop-up a message

We create an instance of
resultsreader using the selected aps
file as the parameter & assign it to a
variable. We check if the file opens

We call resultsreader methods to get
the variables & units

We close the resultsreader object as
we now have what we need

We call the GET method for the
tkinter entrybox object to get it’s
value

We make a name for the Excel file by
adding the user input to a suffix

We make a name for the file folder by
adding the project URL to a fixed
string and then check if it exists, else
we make it

We make a new Excel file with the
Xlswriter.Workbook method with the
path and filename as parameters

We define & add formatting options
(header, bold, right justify) to the
workbook

We add a tab to the workbook and
name it

We add a logo the
worksheet in cell A1

We set the height of row 1 (index 0)
to 50 so the logo fits

Sample output:

We check the units selected, if either
we write header info & column
headings to the worksheet both both
metric & IP

We check the units selected, if both
we write header info & column
headings strings to the worksheet
both both metric & IP and the format
we want as a parameter

We use the worksheet.write method
and pass in the cell reference, column
headings strings and the format we
want as a parameter

We use the worksheet.set_column
method to set column width each for
a range of columns

We check the units selected, if either
we write the data for the row index
each entry incrementing a column
pos ition and calling the data in the
DICT by key

We check the units selected, if both
we write the data for the row index
each entry incrementing a column
pos ition and calling the data in the
DICT by key; both metric & IP data is
written

We loop through the lis t of DICTS of
the variables in the aps file

For the var we look up the units type
in the DICT; we then use this to look
the units of the type in the units DICT

We initialise a row iterator so that
writing starts after the logo and
header info

We increment the row interator

We increment the row interator

We close the workbook using a TRY
statement to catch if there is an error
(such as it is open in Excel!)

We register the new output with VE
content manager

We close the GUI

Unit types are detailed on the
supplementary spreadsheet

	Web article 3.vsdx
	Page-1

