
Python in the VE

VE Scripts – working with ApHVAC

As we have seen a VE data model can becomplex, by building reusable functions we can automate the work
and the scripts we create stay readable. By creating functions that reflect ApHVAC airside, waterside, loops etc.
we work in terms that users will find familiar. We utilise nested DICTs as introduced in previous articles . Pandas
is a powerful tool; once in a dataframe data analysis, plotting and export is straightforward

We create series of functions to help access VE ApHVAC component data. We use these functions to navigate
the ApHVAC object airs ide and waters ide h ierarchies and GET ApHVAC component results. We also
demonstrate adding th is result data to a Pandas dataframe, manipulating the dataframe and exporting the
dataframe to a variety of output formats

Why?

What?

Sample output:

This function creates a list of airside
system ids i.e.

To use this script example you need to
make a suitab le VE Model and set
detailed simu lation output ON

I have collapsed these two functions
to simply keep the line count down in
this long PDF. Have a look at them …
the first produces a DICT that maps
room id & room name. The second
produces a nested DICT that lists hvac
zone group > hvac zone > list of room
ids

Load the HVAC network linked to the
results reader object

We pass in a results reader object so
we only have to open it once

Loop through the systems to get the
id attribute & add to the list

Create an empty list

Waters ide loops serve one or more
airs ide systems

We pass in a results reader object so
we only have to open it once plus a
type so we only need one function for
both loop types

Load the HVAC network linked to the
results reader object

Check the type parameter and call for
the loop ids

Create an empty list

This function automates the look-up
of component type number for use
with results reader

Most components have a one-to-one
type mapping; however a few have
model-types.

This DICT maps component ENUM to
type number

Using a TRY s tatement; is the TYPE of
the component listed in the DICT
keys? If is return the type number for
the key, if not return 0

For types that have model-types now
check the model-type ENUM

For all airside systems create a nested
DICT of system id and component ids
and for each component id
component data

Load the HVAC network linked to the
results reader object

Loop through each airside system

Create an empty all systems DICT

Loop through each component; if it
belongs to the system ...

… add the component id as a key &
the attributes as a list as the value to
the system DICT

Create an empty DICT for each system

Then add each system DICT to the all
systems DICT

For all waterside loops create a
nested DICT of loop id and
component ids and for each
component id component data

However waterside loops, unlike
airs ide, include hierarchies that we
need to dive into to get all the
components involved with each loop

Load the HVAC network linked to the
results reader object

Loop through each waterside loop

Create an empty all loops DICT

Add the loop itself to the DICT

Create an empty DICT for each loop

Add matching components on the
loop to the DICT … hot water first ...

Radiators are directly on a HWL loop.
The isinstance function returns true if
the object is of the specified type

Coils may not be on the HWL loop so
check the coil heat source is a HWL
and the loop id matches

A HWL is supplied by a heat source,
so check if it is heat source using a
TRY statement and if the loop id
matches

A heat source has a list of equipment,
so go through the list and check for a
match

Add matching components on the
loop to the DICT … now chilled water
...

… add the component id as a key &
the attributes as a list as the value to
the loop DICT

Then add each loop DICT to the all
loops DICT

… this is like the hot water
components above ….

… there is a one-to-one relationship
with condenser water loop

To create the Pandas dataframe we
need a datetime index; this is used
for the row labels so we can correctly
manipulate, analyse and chart the
data

Use the results reader object to get
the associated weather file

Open the weather file to get the year
attribute; this is important so that we
start the datetime index on the
correct day of the week

Use date(startyear, month=1, day=1)
to create a date object from the date
class from the datetime module.
Use toordinal to convert a number
and adjust for startDay parameter.
Use fromord inal to convert back to a
date object.
Use str to convert to a string

Use the results reader function
results per day to find the number of
data values per 24 hours

Set the frequency s tring

Determine the number of data points

Use the Pandas date range function
to generate the row index

This function is set-up to be generic;
it gets ApHVAC results data for the
components on a single system or
loop or multiple systems or loops

If group = all we need to concatenate
the systems into one DICT of
components
If group = id we need to get the DICT
of components with the key = id
It is in a TRY statement to catch an
incorrect string entry by the user

Important !

Accessing the nested data …
DICT [KEY] [Index in list 0,1,2]

As not all components are
components we are seeking data for
or the data maybe missing use a TRY
statement

Use type to filter to set up the correct
parameters for the GET component
results function

Create a unique label form the
component id, the results variable
and the aps native units

Use the unique label as a key to add
the results to the output DICT

Create an empty DICT for the output

Output a useful message

Get the user to pick an aps file

As many functions need the results
reader object we open it once and
pass it to each as a parameter

The with …. statement opens the aps
file and automatically closes it after
the following statements end
(indented)

All the effort creating functions now
pays off as one-line calls to get the id
DICTs

Using the id DICTs to call the
hvac_component_results generic
function in a variety of ways

Whilst the results reader object is
open we get the start & end days that
we need to create an index and then
create the Pandas dataframe

As a simple demonstration … we get a
list of the dataframe column names,
take a slice of the list (last column), to
make a new column name

… and use the new column name to
add a new column to the dataframe
with data that is x1.2 of the last
co lumn’s data

Pandas has many very useful
functions for export. It is also directly
supported by many charting libraries
making charting straightforward

	Web article 9.vsdx
	Page-1

