
Python in the VE

VE Scripts – using a GUI with VE scripts

In this example we use a d ialog for data / choice entry for users of a script. We use the Tkinter module to
create the dialog and show how the structure of the script is different as have to use an event loop (this waits
for the user to do something on the dialog). The example uses a Class structure and is an example of Object
Oriented Programming (OOP)

We build a dialog with user entry boxes, a box, buttons, code that creates a room group schema, code that
finds APS files and code that tests for overheating & that exports the results to a spreadsheet . We use an event
loop that drives the operation of the dialog

Why?

What?

Sample output:

A GUI requires a specific code
structure – the event loop; if you
want to read up further try these
links

We create a class (a ‘template’); this
will contain all that we need (a
‘blueprint’) to create the dialog and
execute the overheating analys is. Our
class inherits from the Tkinter Frame
class; this means it inherits (we can
use) the functions in the Frame class

__init__ is a special function that is
executed as soon as an instance of
the class is created

Download the modules we need
Messagebox is in a sub module to
Tkinter so we need to load it
specifically as it is not in the Tkinter
module

We start the event loop; this loops
waiting for the user to do something
on the dialog

We use the __name__ conditional to
ensure we only run the script when it
is the main program. We call our
main function to start the script

Tk d ialog ...

We create a Frame widget; all
widgets inside the dialog will be
ch ildren of th is Frame instance

The code in this function could eas ily
be after line 354, but making a
function makes for easy-to-read
structured code

We create a ‘root’ object that will be
the top of the dialog object tree;
everything will be a child of root

We set some attributes of root

We call the class to create an
instance; we pass in the argument
root – this will be the parent object

self is a reference to the Dialog class
instance and it means ‘I belong to ..’

 Within the class all functions can
access variables prefixed with self,
otherwise they are local to the
function in which they are declared

We create the variables we want to
use throughout the class

We call the function to create the
dialog

We use self.parent to access an
attribute of the parent object – the
title label of the d ialog

We configure the grid manager for
self.frame; this will allow us to easily
place widgets on the dialog. The grid
is zero indexed from the top left
corner

We create a label widget from the Tk
module; it is a child of self.frame

We position the label widget on the
grid. Sticky sets which side of the grid
cell the widget should sit if smaller
than the grid cell (compass points are
used)

We create a button widget from the
Tk module; it is a child of self.frame.
Command sets the function to be
called when the button is activated

We force some white space on the
grid

We create a list of aps file names by
looking in the project Vis ta fo lder

Split creates a list for each word in
the filename string; we check the last
item in the list to check if the
filename suffix is aps. Join
recombines the list into a string; we
could have avoided th is be s imply
using a different variable name on
line 114 but it is useful to see both
methods. If it is an aps file we add it
to the list of available aps files

We create a list box and populate it
with the list of aps filenames

We configure the listbox; select_set
sets the default p ick

We create a label widget from the Tk
module; it is a child of self.frame

We create an entrybox widget from
the Tk module; it is a child of
self.frame

We create a button widget from the
Tk module; it is a child of self.frame.
It calls the self.run_calc function

We create the function to set up the
grouping scheme

Check if the grouping scheme already
exists

If the grouping scheme does not exist
create the grouping scheme and pop-
up a messagebox with instructions

If the grouping scheme already exists
pop-up a messagebox

We create a separate function for just
calcu lating the overheating results
called from run_calc; this avoids the
run-calc function from becoming too
long and hard to read

We loop through all rooms in the
model; we use enumerate to give us
the count & the value of the list item
(a tuple)

Returns a lis t of (room name, room
ID, room area, room volume) tuples
for all rooms in the results file

We unpack the tuple into separate
variables

If room is to be analyzed we get the
results for Ta and occupancy

Convert the results to lists

Setup counters

Use enumerate so we have a counter
that we can use as an index in the Ta
& occupancy lists

Test both lists at the same; if in
occupancy AND Ta exceeds test
increment counters for range test
and occupied hours. If occupied and
not overheating increment occupied
hours

If occupied calculate % hours
overheating

Gather the result in to a list that we
can return from the function

We create the function called by the
calc_button; this contains

Check if the overheating grouping
scheme exists; if it exists set the flag
to the group handle attribute

If the overheating grouping scheme
does not exist show a messagebox
and exit the function

If the overheating grouping scheme
exists get a list of the rooms to be
analyzed

Check if the list of rooms is empty; if
empty show a messagebox and exit
the function

Get the aps filename that has been
selected in the dialog, check if it is
empty; if empty show a messagebox
and exit the function

Get the Excel filename from the
dialog

Create a new Excel workbook (note
xlsxwriter cannot open existing
workbooks)

Create a worksheet

Using the aps filename get a
resultsreader object

Call the calculation function; passing
the arguments resultsreader object &
the list of rooms to be analyzed. The
value (list) returned is assigned to
overheating_data

Create a list of column headings; note
the use of escape characters

Write the column headings on to the
worksheet

Write the data a row (a room) at a
time on to the worksheet

Configure the column widths so the
data is fully visible

Save the workbook; we use a try
statement to handle the situation of
the workbook being opened by
another app since being created

Open the Workbook in Excel

The destroy method kills the widget;
in this it kills the parent widget and
thus ends the script

Workbook ...

	Web article 12.vsdx
	Page-1

