
Python in the VE

VE Scripts – working with National Grid carbon intensity web-based data; making freeform profiles and APP files

In this example we use the REQUESTS module, load the data into a Pandas dataframe, tidy the data then
process the data into a format that we can import into the VE as a freeform profile . We also take the data, add
meta-data and create an APP file

We access the UK National Grid website and download a live dataset of carbon intensity data ; we process the
data and import the data into the VE as freeform profiles. We also save the data into an APP file so we can
chart it in VistaPro

Why?

What?

Sample output:

Load the modules we will need;
appfile is a IESVE module provided in
VE Scripts >iesutils

The National Grid provides datasets
that document Carbon Intensity,
Demand & Wind availability; historic
and live data is available … see
https://data.nationalgrideso.com/
search

We will use the carbon intensity
dataset as per this URL; it is upda ted
every 30 minutes

The NG website supprts cURL,
which stands for client URL. This is
a tool that we can use to transfer
data to and from a server. At the
most fundamental, cURL lets you
talk to a server by specifying the
location (in th e form of a URL) and
the data you want to send

Note the units of the source data and
the data columns provided

We assign a url string to a variable

We use the requests module GET
method to request a response object
from the source

We check that the response object is
valid by checking it’s status_code
attribute

If the object is valid we GET the
object’s content. It is in the form a of
a CSV file which we import to a
Pandas datafame using the Pandas
read_csv method. We have used the
decode method to resolve any non
UTF 8 character issues and StringIO to
output this output into an object that
read_csv can use. You may want to
save the CSV & take a look at the raw
data format

Print a message if the response
object is not valid

Function to tidy the raw dataset

Remove leap year extra day data
rows

Convert to the units used in the VE

There can be gaps in the data; fill the
gaps as we do not want any NaN
entries

Convert the imported datetime string
column to a datetime object type and
set the index to this column

Function to transform the tid ied data
in to columns that are needed for
Freeform profile creation

Remove unwanted columns

Cast data column to float type

Rename the data column

Work out the frequency of the data

Create an empty list and define the
number of days in each non-leap year
month

Loop through the months, days,
hours & minutes by time step ...
create a list for each ordinate and
append to this to the main list to
make a list of lists

The Freeform profiles format includes
an additional terminating line; create
this … we use df.iat[-1,0] to copy the
last value in the dataframe

Create a new dataframe df1 using the
list of lis ts

Function to create a Freeform profile
in the current model

Function to download the raw data

Create a unique s tring to name the
profile

Get the current project & assign to a
variable

We need to convert the dataframe
columns into a list of lists whilst
maintaining data type; however the
Pandas tolis t() method converts
integers to floats so we will use the
map() function with df.itertuples as
the iterables input (an object to
iterate over namedtuples for each
row in the DataFrame) with list as the
function to apply. We then apply list
to make this a list of lists

We create the profile, set the data
and save the profile

Function to create an APP file

Create a dataframe from the input
DICT containing one or more years of
data

Create a datetime series with a 30
min timestep, add it to the dataframe
and set it as the index

Create a string for the APP file name

Get the current project & assign to a
variable

Get a list of column names in the
dataframe; these will become
variable names in VistaPro

The APP format requires a DICT for
each variable to define where it will
appear in the VistaPro category tree,
it’s data type and any metadata
(none in this case)

We set the year and timestep data
and add it to the variables DICT

We create a file path to the project
Vis ta folder then call the APPFile
method to create the APP file

We write the APP file to the file path;
we wrap this in a try statement to
catch if the file already exists and is
open e.g. Vis taPro is open

This where the script starts executing

Call the function to download the
data

Call the function to tidy the data
Optionally save the CSV to see the
tidied data format

Make a lis t of the years we want to
process

Create an empty DICT; we will use
this to hold the data for the APP file
creation

Loop through the years list

Create a dataframe by s lice for the
year
Call the function to the data in the
required format

Call the function to create the
freeform profile

Add the data for the year to the APP
file DICT as a list of floats

Call the function to create the APP
file

VE Scripts output pane:

ApPro > Freeform profiles view:

Vis taPro picker panes:

	Web article 11.vsdx
	Page-1

