
Python in the VE

VE Scripts – working with Macroflo & Model openings

In this example we navigate VEMacroflo and VEBody via methods from these APIs. We use a DICT to organise
the data we extract because DICT keys make sure we store what the values mean and give us an elegant way to
access specific data. We also utilise DICTs to specify changes we make using SET methods.

We use GET and SET methods with Macroflo opening types. We also use GET and SET methods with model
openings data. The GET & SET methods typically use data in DICT form. Using DICTs is also a good way of
organising data that we GET from the VE. In this example we use a DICT to match selections and revise data
when we iterate to assess the impact of changing Macroflo opening extent on maximum room temperate

Why?

What?

Sample output:

We create a function to GET data for
all the Macroflo opening types. We
are only interested in some of the
opening data so we will assemble the
required data and output it in a
nested DICT … the format is ...

For this example we need to set-up a
mod el with Macroflo o penin g types
created, assigned and make sure that
coo ling is OFF

We GET the Macroflo opening types

We create an empty DICT to receive
the opening data we want

We iterate through the list of opening
types & for each we GET it’s data; this
data is returned as a DICT

We assemble the data we want in a
DICT and assign it to a key in the
output nested DICT

We create a function that will SET the
openable area value for all Macroflo
types. In this example we increment
the value with the parameter
increment (so it will go up or down
each time we call the function)

We iterate through the opening types
nested DICT; as it is a DICT the
iterator (type) is the DICT keys

We access the opening types nested
DICT data us ing the type key & the
property key. We increment the value
and assign it to the new_value
variable

We then SET the new value by
passing a DICT of revisions via the SET
method on the Macroflo object (the
Macroflo object reference is saved in
the openings type DICT keyed by type
& object) ...

{ 'Test1': { 'object': <iesve .VEMa croFlo object a t 0x000002717C5A2450>, 'reference _id': 'XTRN0000', 'opena bl e_a rea':

60.0},

'Test 2': { 'object ….. etc }}

{'Test1': {'object': <iesve .VEMa croFlo object a t 0x000002717C5A2450>, 'reference _id': 'XTRN0000', 'opena bl e_a rea':

60.0},

'Test2': { 'object ….. etc }}

We create a function that will return
a LIST of body names for the list of
bodies we have passed in as a
parameter. We can then use this lis t
to iterate through the geometry. It is
good practice to create a function of
any code that is used more than once

We iterate through the body list,
check it is a room and then append
the body attribute name to the
output list

We create an empty list for the
output

We create a function that will return
a nested DICT of all openings in the
model that have a Macroflo type
assigned. The DICT keyed by opening
ID will include body id, surface index,
aps handle and Macroflo type

We create an empty DICT for the
output

We iterate through the list of bodies
passed in as a parameter. We then
use nested loops to drill down
through the room surfaces and the
openings

We GET opening data; this returns a
DICT

We assemble the data we want in a
DICT and assign it to a key using the
opening ID in the output nested DICT

We create a function that will return
a DICT of the selected bodies and the
max air temperature the space
reaches with results file name that is
passed in as a parameter

We create an empty DICT for the
output

We open the results file using with;
this automatically closes the results
file outside of the with code block.
We also use assert to check open has
returned an object

We iterate through all bodies using
the results reader API to get the peak
value. We add a key : value pair to
the output DICT

We create a function that will assign
a Macroflo opening type that we pass
in as a parameter to all openings in
the bodies list

We iterate through the list of bodies .
We then use nested loops to drill
down through the room surfaces and
the openings

We check that the opening id is in the
openings data DICT. If it is we than
use the openings data DICT and
openings types DICT to look-up
parameters we need for the
body.assign_opening_type_by_id()
method to make the ass ignment

We call the function to get a list of
room bodies

Note that we do not return anything
so there is no return statement

We use if __name__ == '__main__':
to create a means to test the
functions

We get the current project, then the
actual model, then a list of bodies
that are currently selected by the user
in the VE UI by setting the get_bodies
method parameter to True

We create an instance of the
ApacheSim class & assign it to a
variable

We call the function to get a DICT of
Macroflo opening types & print

We call the function to SET openable
area for all Macroflo opening types

We call the function to get a DICT of
Macroflo opening types & print to see
the change

We call the function to get a DICT of
openings data & print

We SET the options for thermal
simulation

We use the Macroflo opening type as
an iterator; within each iteration we
will:

- SET type for all openings using the
 function we created

- Print out the openings data to see
 the change

- Simulate the revised model. We
 print out what the sim object
 returns i.e. if it successfully ran

- Get a DICT of body : max air
 temperature using the function we
 created & print

It would be s traightforward to revise
the loop to include a test and
increment the data so that it iterates
to a maxima or minima

Macroflo opening types starting data

Macroflo opening types revised data

Selection set Openings data

1st iteration, sim was successful, Ta max

2nd iteration, sim was successful, Ta max

3rd iteration, sim was successful, Ta max

	Web article 10.vsdx
	Page-1

