
Sample output:

Python in the VE

VE Scripts – working with room data

In this example we navigate VEBody to VERoomdata and access room data via methods for room general data ,
air exchanges, systems, internal gains and room conditions. We use a DICT to organise the data we extract
because DICT keys make sure we store what the values mean and give us an elegant way to access specific
data. We also utilise a DICT to specify changes we make using a SET method.

We use GET and SET methods to access VE data. To use them you need to navigate the API hierarchy. The GET
methods typically return data in DICT form, often nested, which we need to be able to access. Using DICTs is
also a good way of organising data that we GET from the VE.

Why?

What?

Even though it a simple bit of code
because we may reuse it is best put in
a function.

We used a method from the VEBody
API , but you could use the
get_general() method from the
VERoomData API. This demonstrates
how sometimes data can be accessed
in more than one way; I have picked
the most elegant option here.

We create an empty DICT and assign
it to a variable; we will populate the
DICT in the subsequent loop

We check that the body is a room; it
means users can include any body
type in the parameter, but we handle
it so the code is resilient

We use the VEBody method
get_room_data() to get a
VERoomData object; we ass ign it to a
variable

We use VERoomData methods to
access what we want; we ass ign each
to a variable. General, apache_system
& room_con ditions return DICTs

Try printing out the DICTs to look at
the format & contents

The VEBody method get_air-
exchanges() returns a list of
RoomAirExchange objects, so we
need to drill down further in the
hierarchy using the RoomAirExchange
API get() method to get a DICT for
each air exchange object

We make list of the data we want for
each air exchange and append it to a
list to make a list or lists

Internal gains are like air exchanges,
but it returns three data classes

We handle this extra level of
hierarchy by testing the type_val
variable as this describes which of the
3 classes is returned; we then know
which variables are accessible for
each internal gain object

Nested DICTs are accessed us ing the
nested key values in sequence; in this
case the keys are (print it to see) ...
['max_sensible_gains'][0]

We make list of the data we want for
each internal gain and append it to a
list to make a list or lists (we could
have used a DICT but this data is clear
enough in a list)

We make a DICT that assembles all
the data we have extracted and
return it from the function

We want to make functions that are
as useful as possible; so in this case
rather than SET just what we need i.e.
setpoints we create it set all room
conditions ...

… the use of a DICT as a parameter
makes th is really easy

Again by checking the body type we
make the code more resilient

We get the VERoomData object and
then use a SET method to write the
revised data, in the form a DICT, to
the VE

We use if __name__ == '__main__':
to test the code

We call the room_names function

We call the room_summary function.
We use the room name key to pull
ALL the data from the DICT we
created

As the DICT is nested we use can keys
in sequence to easily access any
specific data

We call the set_space_conditions
function; we pass in a DICT as a
parameter of the changes we want.
Note that we must include changes to
the off-template variable (the
checkbox on room query) to make
the changes to the room

We GET the data again rom the
model to check the changes

	Web article 7.vsdx
	Page-1

